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Computational biology ML for health
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Challenges in biomedical ML applications

e Data size

e Labels are expensive

e Missing “ground truth”

e Generalization

e |[nterpretability and causal inference



Two common modelling paradigms
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DNA = set of instructions which tell a cell whattodo
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With whole genome sequencing, get a list of
mutations in a sample
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A tumour sample contains a mixture of cells!




Cells in a tumour are all related
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Cells in a tumour are all related
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Mutations act as a “fossil record” of everything that happened to the
tumour over its development.



Mutagens and DNA repair defects can cause distinct
patterns of mutations
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identify these patterns

Mutational signhature analysis
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Problem: current standard model mixes the effects of
damage and misrepair processes

DNA lesion
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Having dedicated damage and repair signatures helps
predict repair deficiencies in cancer

Feature Set

E Dedicated signatures (my work)

. Mixed signatures (current standard)
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PhD life

The good: you get to work with amazing people, on
problems you think are cool.

The bad: It can feel like a group project where you’re
the only one who cares if you get a good grade

The ugly: it takes 4+ years



How | spend my time

e Alot of reading papers

e Writing code, doing data analysis

e Making plots & figures

e Writing results and scholarship applications
e Talking to other scientists
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Things you can do now to prepare for grad school

e Take a project-based class to get good at working
iIndependently

e Read papers

e Attend talks (ex. monthly meeting of torbug.org)

e Joinaresearch lab
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Think about reference letters!
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